Publications

Advised students/scholars are underscored. Group members and alumni are in bold.

In review/revision

Liu, Y., Scaling plant hydraulic traits to predict ecosystem fluxes under drought, New Phytologist.

Xu, X., Scholl, C., Ma, Y., Gora, E., Uriarte, M., Anderegg, W. R. L., Liu, Y., Han, T., Luo, Y., Koven, C., Hansen, W. D., & Morton, D. C., Mechanisms and scales in modeling forest responses to changing disturbance regimes. New Phytologist.

Tong, Y., Moortgat, J., Duncanson, L., & Liu, Y., Climate change and human pressure jointly drive net biomass loss from forest loss and gain in Sub-Saharan Africa. Communications Earth & Environment.

You, H., Park, T., Che-Castaldo, C., Hao, D., Chatterjee, A., Li, F., Wang, Z., Ji, F., Sen, B., Wang Y., Lazzara, M. A., Liu, Y., Kurosu, T., Lauret, N., Chavanon, E., Chen, M., Antarctic Greening and Its Drivers. Nature.

Song, K., Zhu, Z., Knighton, J., Qiu, S., Yang, X., Suh, J. W., Tavares, J. V., Liu, Y., Tai, X., Fahey, R., Neigh, C. S. R., Callahan, R., Hong, F., Li, T., Grinstead, A., Ren, W., Witharana, C., Hedges, S. B., Yang, Z., & Leite, R. V., The Physiological Key to a Satellite-derived Forest Resilience Indicator. Nature Ecology & Evolution.

Kathuria, D., Konings, A. G., Kolassa, J., Liu, Y., Zhao, M., & Shiklomanov, A. N., Reconciling remote sensing and reanalysis land surface temperatures: How surface conditions shape bias between GOES-16 and MERRA-2 across the contiguous US. Journal of Applied Meteorology and Climatology.

Robinett, T. W., Kolassa, J., Zhao, M., Liu, Y., Shiklomanov, & Konings, A. G., Parameterizing stomatal conductance based on trait-environment relationships often improves land surface model predictions of evapotranspiration and streamflow. Journal of Advances in Modeling Earth Systems.

Chen, R., Zhao, Q., Liu, Xu., Liu, Y., Hong, S., Peñuelas, J., & Zeng, H., Future increased climatic and land-use risks to global plant species. Communications Earth & Environment.

Wu, D., Zhou, Y., Feng, Y., Gora, E. M., Longo, M., Negron-Juarez, R., Saatchi, S. S., Liu, Y., Ma, Y., Morton, D. C., McDowell, N., Luo, Y., & Xu, X., Increasing atmospheric dryness and storms accelerate biomass turnover in Amazonian forest. Nature Climate Change.

Hu, L., Montzka, S. A., Miller, J. B., Tans, P. P., Kaushik, A., Ma, J., Krol, M., Remaud, M., Schuldt, K., Michel, S. E., Sweeney,C., Liu, Y., Vimont, I., Crotwell, A., Hall, B., Chen, M., & Yakir, D., Dominance of CO2 fertilization in driving the large increase of terrestrial photosynthesis at high northern latitudes. Science Advances.

2025

Climate-driven hydraulic traits shift in natural and planted forests: patterns, drivers, and future acclimation
Bai, Y., Hu, Y., Liu, Y., Yu, K., Zhang, Y., & Zhang, B. (2025). Climate-driven hydraulic traits shift in natural and planted forests: patterns, drivers, and future acclimation. Earth’s Future (in press).

Satellite-Constrained Reanalysis Reveals CO2 Versus Climate Process Compensation Across the Global Land Carbon Sink
Bilir, T. E., Bloom, A. A., Konings, A. G., Liu, J., Parazoo, N. C., Quetin, G. R., Norton, A. J., Worden, M. A., Levine, P. A., Ma, S., Braghiere, R. K., Longo, M., Bowman, K., Saatchi, S., Schimel, D. S., Miller, C. E., O’Sullivan, M., Kang, Y., Pandey, S., Patton, Yang., Y., & Liu, Y. (2025). Satellite-constrained reanalysis reveals CO2 versus climate process compensation across the global land carbon sink. AGU Advances, 6, e2025AV001689.

DroughtSet: Understanding Drought Through Spatial-Temporal Learning
Tan, X., Zhao, Q., Liu, Y., & Zhang, X. (2025). DroughtSet: Understanding Drought Through Spatial-Temporal Learning. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 39, No. 27, pp. 28440-28448).

2024

Warming and disturbances affect Arctic-boreal vegetation resilience across northwestern North America
Zhang, Y., Wang, J.A., Berner, L.T., Goetz, S.J., Zhao, K., & Liu, Y. (2024). Warming and disturbances affect Arctic-boreal vegetation resilience across northwestern North America. Nature Ecology & Evolution. 8, 2265–2276.

DRMAT: A multivariate algorithm for detecting breakpoints in multispectral time series
Li, Y., Wulder, M.A., Zhu, Z., Verbesselt, J., Masiliūnas, D., Liu, Y., Bohrer, G., Cai, Y., Zhou, Y., Ding, Z., & Zhao, K. (2024). DRMAT: A multivariate algorithm for detecting breakpoints in multispectral time series. Remote Sensing of Environment, 315, 114402.

Large divergence of projected high latitude vegetation composition and productivity due to functional trait uncertainty
Liu, Y., Holm, J. A., Koven, C. D., Salmon, V. G., Rogers, A., & Torn, M. S. (2024). Large divergence of projected high latitude vegetation composition and productivity due to functional trait uncertainty. Earth’s Future, 12, e2024EF004563.

Structural constraints in current stomatal conductance models preclude accurate prediction of evapotranspiration
Raghav, P., Kumar, M., & Liu, Y. (2024). Structural constraints in current stomatal conductance models preclude accurate prediction of evapotranspiration. Water Resources Research, 60, e2024WR037652.

Explicit Consideration of Plant Xylem Hydraulic Transport Improves the Simulation of Crop Response to Atmospheric Dryness in the U.S. Corn Belt
Yang, Y., Guan, K., Peng, B., Liu, Y., & Pan, M. (2024). Explicit consideration of plant xylem hydraulic transport improves the simulation of crop response to atmospheric dryness in the U.S. Corn Belt. Water Resources Research, 60, e2023WR036468.

2023

Changes in hydrological processes and water resources in the context of climate change and carbon neutrality
Lei, H., Wang, X., & Liu, Y. (2023). Virtual special issue” Changes in hydrological processes and water resources in the context of climate change and carbon neutrality”. Journal of Hydrology, 627, 130268.

Crop yield prediction via explainable AI and interpretable machine learning: Dangers of black box models for evaluating climate change impacts on crop yield
Hu, T., Zhang, X., Bohrer, G., Liu, Y., Zhou, Y., Martin, J., Li., Y., & Zhao, K. (2023). Crop yield prediction via explainable AI and interpretable machine learning: Dangers of black box models for evaluating climate change impacts on crop yield. Agricultural and Forest Meteorology336, 109458.

2022

Evapotranspiration frequently increases during droughts
Zhao, M., A, G., Liu, Y., & Kongings, A.G. (2022). Evapotranspiration frequently increases during droughts. Nature Climate Change, 12, 1024–1030.

Hydraulic sensitivity and stomatal regulation of two desert riparian species
Bai, Y.Liu, Y., Kueppers, L. M., Li, E., Zhang, C., Yu, K., Yang, X., & Li, X. (2022). Hydraulic sensitivity and stomatal regulation of two desert riparian species. Journal of Geophysical Research: Biogeosciences, 127, e2022JG006971.

Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2
Zhang, Y., Gentine, P., Luo, X., Lian, X., Liu, Y., Zhou, S., Michalak, A.M., Sun, W., Fisher, J.B., Piao, S., & Keenan, T.F. (2022). Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2. Nature Communications, 13, 4875.

Canopy height and climate dryness parsimoniously explain spatial variation of unstressed stomatal conductance
Liu, Y., Flournoy, O., Zhang, Q., Novick, K.A., Koster, R.D., & Konings, A.G. (2022). Canopy height and climate dryness parsimoniously explain spatial variation of unstressed stomatal conductance. Geophysical Research Letters, 49, e2022GL099339.

Dispersal and fire limit Arctic shrub expansion
Liu, Y., Riley, W.J., Keenan, T.F., Mekonnen, Z.A., Holm, J.A., Zhu, Q., & Torn, M.S. (2022). Dispersal and fire limit Arctic shrub expansion. Nature Communications, 13, 3843.

Impacts of forest loss on local climate across the conterminous United States: Evidence from satellite time-series observations
Li, Y., Liu, Y., Bohrer, G., Cai, Y., Wilson, A., Hu, T., Wang, Z., & Zhao, K. (2022). Impacts of forest loss on local climate across the conterminous United States: Evidence from satellite time-series observations. Science of The Total Environment, 802, p.149651.

2021

Reduced ecosystem resilience quantifies fine-scale heterogeneity in tropical forest mortality responses to drought
Wu, D., Vargas, G.G., Powers, J.S., McDowell, N.G., Becknell, J.M., Pérez-Aviles, D., Medvigy, D., Liu, Y., Katul, G.G., Calvo-Alvarado, J.C., Calvo-Obando, A., Sanchez-Azofeifa, A., & Xu, X. (2021). Reduced ecosystem resilience quantifies fine-scale heterogeneity in tropical forest mortality responses to drought. Global Change Biology, 28, 2081– 2094.

The coupled effect of soil and atmospheric constraints on the vulnerability and water use of two desert riparian ecosystems.
Bai, Y., Liu, Y., Kueppers, L. M., Feng, X., Yu, K., Yang, X., Li, X., & Huang, J. (2021). The coupled effect of soil and atmospheric constraints on the vulnerability and water use of two desert riparian ecosystems. Agricultural and Forest Meteorology, 311, 108701.

Detecting forest response to droughts with global observations of vegetation water content
Konings, A. G., Saatchi, S. S., Frankenberg, C., Keller, M., Leshyk, V., Anderegg, W. R., Humphrey, V., Matheny, A. M., Trugman, A., Sack, L., Agee, E., Barnes, M. L., Binks, O., Cawse-Nicholson, K., Christoffersen, B. O., Entekhabi, D., Gentine, P., Holtzman, N. M., Katul, G. G., … Zuidema, P. A. (2021). Detecting forest response to droughts with global observations of vegetation water content. Global Change Biology, 27, 6005– 6024.

Global ecosystem-scale plant hydraulic traits retrieved using model–data fusion
Liu, Y., Holtzman, N. M., & Konings, A. G. (2021). Global ecosystem-scale plant hydraulic traits retrieved using model–data fusion, Hydrology and Earth System Sciences, 25, 2399–2417.

Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance
Mekonnen, Z. A., Riley, W. J., Berner, L. T., Bouskill, N. J., Torn, M. S., Iwahana, G., Breen, A. L., Myers-Smith, I. H., Criado, M. G., Liu, Y., Euskirchen, E. S., Goetz, S. J., Mack, M. C., & Grant, R. F. (2021). Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance. Environmental Research Letters, 16(5), 053001.

2020

Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration
Liu, Y., Kumar, M., Katul, G. G., Feng, X., & Konings, A. G. (2020). Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nature Climate Change, 10, 691–695.

Forecasting semi-arid biome shifts in the anthropocene
Kulmatiski, A., Yu, K., Mackay, D. S., Holdrege, M. C., Staver, A. C., Parolari, A. J., Liu, Y., Majumder, S., & Trugman, A. T. (2020). Forecasting semi-arid biome shifts in the Anthropocene. The New Phytologist, 226(2), 351–361.

2019 & earlier

Reduced resilience as an early warning signal of forest mortality
Liu, Y., Kumar, M., Katul, G. G., & Porporato, A. (2019). Reduced resilience as an early warning signal of forest mortality. Nature Climate Change, 9, 880-885.

A dynamic optimality principle for water use strategies explains isohydric to anisohydric plant responses to drought
Mrad, A., Sevanto, S., Domec, J.-C., Liu, Y., Nakad, M., & Katul, G. (2019). A Dynamic Optimality Principle for Water Use Strategies Explains Isohydric to Anisohydric Plant Responses to Drought. Frontiers in Forests and Global Change, 2, 49.

Using nested discretization for a detailed yet computationally efficient simulation of local hydrology in a distributed hydrologic model
Wang, D., Liu, Y., & Kumar, M. (2018). Using nested discretization for a detailed yet computationally efficient simulation of local hydrology in a distributed hydrologic model. Scientific Reports, 8(1), 5785.

Increasing atmospheric humidity and CO2 concentration alleviate forest mortality risk
Liu, Y., Parolari, A. J., Kumar, M., Huang, C.-W., Katul, G. G., & Porporato, A. (2017). Increasing atmospheric humidity and CO2 concentration alleviate forest mortality risk. Proceedings of the National Academy of Sciences of the United States of America, 114(37), 9918–9923.

Role of meteorological controls on interannual variations in wet-period characteristics of wetlands
Liu, Y., & Kumar, M.(2016). Role of meteorological controls in interannual variations in wet-period characteristics of wetlands. Water Resources Research, 52(7): 5056-5074.

Responses of natural vegetation dynamics to climate drivers in China from 1982 to 2011
Liu, Y., & Lei, H. (2015). Responses of natural vegetation dynamics to climate drivers in China from 1982 to 2011. Remote Sensing, 7(8): 10243-10268.